

Zur trimolekularen Reaktion (4) schreiben schon Johnston und Crosby (JCP 22, 689, 1954), die die Kinetik der Entgiftungsreaktion (3) gemessen hatten, dass die Raten von Reaktion (4) im Vergleich zur Entgiftungsreaktion (3) "negligibly slow" sind (wie man es für trimolekulare Reaktionen in der Gasphase aufgrund der Seltenheit von 3-er Stößen ja auch erwarten würde).

Die langsame Reaktion (4) läuft dann ab, wenn fast ausschließlich NO und O₂ vorhanden sind.

Falls aus dem so gebildeten NO_2 durch UV-Licht O_3 gebildet werden sollte, wird es sofort durch Reaktion (3) mit NO_2 zurückverwandelt [Glasson und Tuesday, J. Am. Chem. Soc. 85, 2901 (1963)].

In der Atmosphäre ist O_3 aber immer (auch in der Nacht) vorhanden. Daher wird emittiertes NO schnell durch Vernichtung von O_3 via (3) in NO_2 zurückverwandelt (so lange hinreichend viel O_3 vorhanden ist).

Environmental Protection Agency 2017: "... emissions of nitric oxide (NO), with the subsequent conversion of NO to NO_2 primarily though reaction with ozone (O_3). The initial reaction between NO and O_3 to form NO_2 occurs fairly quickly during the daytime, with reaction times on the order of minutes."

Schlussfolgerung: Die im Graphen aufgestellten Behauptungen des Umwelt Prognose Instituts e.V. zur Entstehung von O_3 aus NO Emissionen von Kraftfahrzeugen sind nach dem Wissen über chemische Kinetik und nach dem EPA-Bericht (2017) falsch. Den empirischen Beweis dafür haben, wie Tavan und Denschlag (2018) gezeigt haben, die Messungen von Melkonyan und Kuttler (2012) geliefert.